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Test for low-dimensional determinism in electroencephalograms
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We tested low-dimensional determinism in an electroencephalogf&®), based on the fact that smooth-
ness(continuity) on an embedded phase space is enough to imply determinism within time series. A modified
version of the method developed by Salvino and CaWRlyys. Rev. Lett73, 1091(1994] was used. In our
method, we chose a box randomly and then estimated the mean directional element in the box containing the
d+1 data points, wherd is the embedding dimension. The global average for the mean local directional
elements over the boxed/, is a measure for smoothness. The nonlinear noise reduction method developed by
SauerPhysica D58, 193(1992] is then applied to the EEG. We also compared the results for the EEG with
those for its surrogate data. We found that Wevalues for the noise-reduced EEG had stable values around
0.35, which means that the EEG is not a low-dimensional deterministic signal. However, this method may not
be applicable to the time series generated from high-dimensional deterministic systems. We cannot exclude the
possibility that the determinism in the EEG may be too high-dimensional to be detected with current methods.
[S1063-651X%99)05207-1

PACS numbd(s): 87.80.Tq, 87.19.Nn, 87.90y

I. INTRODUCTION data did[23]. Thus many of the claims for deterministic
chaos in EEG data must bear critical examination and re-
ElectroencephalografEEG) is a complex and aperiodic evaluation.
time series, which is a sum over a very large number of By using the surrogate data methods, Thedeal. found
neuronal dendritic potentials. It is an important problem tothat the EEG was not produced by low-dimensional chaos
decide whether the EEG is filtered noise or a deterministi¢24,25. Pritchardet al. also applied surrogate-data testing to
signal. If the EEG is deterministic, then we can extract a lota normal resting human EEG and revealed that a normal
of information on brain dynamics from the EEG, and thenresting human EEG was nonlinear, but did not represent low-
study brain functions with dynamical models from the EEG.dimensional chaof26]. Similar results have been indepen-
Whether the EEG is generated by a deterministic chaotidently reported by Casdadl27], Romboutset al. [28], and
process or a linear stochastic one is still controversialPalus[29].
Babloyantz and Salazar first reported that the EEG data from Recently more direct methods have been developed to
the human brain during the sleep cycle had chaotic attractorsetect determinism within a time serig28-38. The
for sleep stages Il and IV1]. A lot of research with nonlin-  Sugihara-May method is based on how well past trajectories
ear methods revealed that the EEG had a finite nonintegeyan predict the futurg30]. The Kaplan-Glass method is
correlation dimension and a positive Lyapunov exponentbased on the parallelness of a certain vector field recon-
which means that the EEG is generated by a determinististructed from the time-series ddt2,33. The methods pro-
chaotic neural proce§2—4]. Haken and his colleagues ana- posed by both Waylanét al. [34] and Salvino and others
lyzed the spatio-temporal patterns of the EEG in epileptid 35—37 also measure the continuity of a vector series on an
seizures. These showed that the global dynamics of the EEEmbedded phase space. These direct methods can be useful
might be described by a nonlinear evolution equation within identifying deterministic chaos in natural signals with
order parameters and a few principal patterns, which are inbroadband power spectra. They are also capable of distin-
timately related to the degrees of freedom within the systenguishing between chaos and a random process very effec-
[5-7]. Furthermore, there is some evidence that the distinctively.
states of brain activity can also have different chaotic dy- There are only a few studies on the application of these
namics quantified by nonlinear dynamical measygesl]]. direct methods to the EEE9-41]. Blinowska and Mali-
These measures, even though as measures of complexitpwski applied the Sugihara-May method to the EEG, and
they are still informal instead of being used as absolute meaeported that the benefits in prediction from this method were
sures, can be used as a fruitful tool in differentiating thesimilar to that of a linear autoregressive method. Mees used
physiological and/or pathological brain stafé2-17. the tesselation method to predict one step ahead for the EEG
However, there are a number of technical problems in th¢40]. The prediction is rather poor in some places, but in
implementation of current nonlinear dynamic algorithmsother places it is very good. She draws a conclusion carefully
with regard to such variables as data size, sampling rate, arftbm this casual prediction simulation that determinism in
stationarity that preclude an unambiguous interpretation oEEG might exist. Glass and his colleagues tested with the
data sets[18-21. Osbhorne and Provenzale demonstratedkaplan-Glass method for deterministic dynamics in both a
that the signals from (1)-like linear stochastic systems, so- real EEG and a simulated EEG generated by a neural net-
called colored noise, also resulted in a finite correlation diwwork model[41]. They found similar orientations of tangents
mension[22]. Rapp et al. showed that the filtered noise to the trajectory in a given small region of phase space from
could mimic low-dimensional chaotic attractors as the EEGthe simulated EEGs, but not from the real EEGs. They,
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therefore, concluded that the real EEG data did not have any nj
determinism. However, these studies were all preliminary sznj’lz X(X;). 3
since they used only small embedding dimensions of about =1

3-5, and did not consider the effects of noise in the EEG . .
data. Y; is 1 for smooth data, and it decreases to O for random

In the present paper, we tested the low-dimensional detefla{@. A global average of mean local directional elements
minism in the EEG more rigorously by using a modified over the boxes is a measure for smoothness, that is, deter-

version of the method which was originally proposed by™Minism, in the vector field.

Salvino and Cawley{35—-37. It is based on the fact that

smoothnesgcontinuity on an embedded phase space is W:Nflz ni|Y;|J2 (4)
enough to imply determinism within a time series. We ap- T

plied a nonlinear noise-reduction method to the EEGs in or-

der to remove noise effects, and then used the minimunis just a weighted mean squaref. If the data are smooth
embedding dimension for a reconstruction of the attractomnd boxes are sufficiently small/is 1. Wis, however, often
from the EEG in the phase space. Finally, we compared the lot less than 1 owing to the finite numerics for smooth data.
results from the EEG with those from the surrogate data ofA/ depends on embedding parameters such as time delays

the EEG. and embedding dimensions.
W also depends on the choice of vector fi@ldThe natu-
Il. ALGORITHMS FOR DETECTING SMOOTHNESS ral choice{c,}={—1,1}, implicit in the method of Refs.

_ ) ) [32-34, does not necessarily produce the most deterministic

The main step in our test is to detect smoothness of thfooking W(A). SinceW=1 is supposed to hold for ag,},
vector fields in the phase space reconstructed from the EEe choice of vector field is arbitrary. We choose ten vector
data. If the time series are generated from deterministic Syste|ds, first chosen by Salvino and Cawlg86], and identify
tems that are governed by nonlinear ordinary differential,aximum and minimum values of th&/(A) for each time
equations, then nearby points on the phase space behaygiayA
similarly under time evolution. These smoothness properties The method, which estimates the average of the direc-
thus imply determinism. _ tional elements after partitioning the phase space by uniform

Let an observed time seriegt) be the output of a differ-  4rjgs may present spurious results for inhomogeneous vec-
entiable dynamical systeril on anm-dimensional manifold  {q; fields in the phase space. The value of the mean direc-
M. With delay coordinates and a sufficiently large embed+jona| elements in a box depends on the number of data
ding dimensiond, an embedding oM into ad-dimensional  hgints in a box. If we partition the phase space by a coarse-
reconstructed maﬂlf0|Rd then typically results. The delay grained uniform grid, the dense regions would have exces-
vector time series x(t)=(v(t),v(t+4), ... v(t+(d  sjyely large points in one box, which then leads to low val-
—1)A)), whereA is the time delay, lives in the embedded ,es ofw even for smooth data. On the other hand, if there
image ofM in R%. Smoothness of the dynamical system iSare only one or a few points in the boxes with finely grained

preserved in the embedded imz_;\gcle. _ meshes, they would give rise to relatively high valuesvibr
We denote a time-one map, i.€., by F and consider the |t js very difficult to partition the phase space by a proper
following general quantity: size of grids in a high-dimensional phase space, because the

B B b b(R—1) number of boxes is exponentially increasing as the size of
=)=V xF(x),...F (x), R>1, (1) the boxes decreases. Unfortunately, most of the dynamical
systems in nature are both high-dimensional and inhomoge-
neous.

We modified the method in order to overcome these prob-
lems. First, we picked a random point in the phase space, and
then we chose the nearest-neighbor points around this ran-

where F® denotes thébth iterate ofF, and ¥ is a smooth
function of itsR vector arguments int&®%. ¢(x) is a vector
field in RY. If we takeb= 1 here for simplicity, then a simple
form for ¢(x) is

R-1 dom center. We selectath- 1 for the number of the nearest
X) = c.F'(x), R>1. 2 n_elghpors arpund this random center, whelie thg emped—
ot 20 P @ ding dimension. Then we estimated the mean directional el-

ements in that box, and iterated it.

F may be an arbitrarily sampled flow, or a map; In the test, we introduced an informal determinism toler-
FOx(t))=x(t), FI(x(t))=x(t), FX(x(t))=x(t+1), etc. ance criterion: if 0.82W<1.0, then we would label the
Thec, are arbitrary, and we now take them to be constantsgiven data as deterministic, and if<ON<0.7, then we
independent ok. would conclude there is no evidence for determinism. The

Directional fields(unit vector$ for ¢(x) in dynamical intermediate case, 0<?W<0.9, is known to sometimes arise
systems are smooth, and depend on the choice df,th&o  from a deterministic time serief36]. In these cases we
estimate the smoothness of the fields, we can partition thevould necessarily compare the results with those for the sur-
phase space by a uniform grid in the Salvino-Cawleyrogate data.
method. We call th¢th mesh cell of points, comprised of the  Figure 1 shows the comparison of théplots for the data
Xi,i=1,...n;, boxj. Then we can compute the average of of Rassler systems obtained frofa our method with those
the directional elementsx=¢(x)||¢(x)| "2, over boxj, from (b) the Salvino-Cawley method. For the &er time

where| ¢(x)|| is a norm of(x). series thex coordinate ofx=—(y+2z),y=x+0.15/,z=0.2
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_ FIG. 1. _The comparison oV plots obtained from our method FIG. 2. W(A) plots for the data fronta) Lorenz system antb)
with the original one: For each time deldy, computedW values Henon map.W values shown are maximurm®) and minimum
are maximum @) and minimum ) for Rossler systenta) with (0) for eachA.

our method;(b) with the original method.

basic idea of the method is that in the passage from dimen-
+zx— 10z was sampled wittAt=0.004. The number of data siond to dimensiond+ 1, one can differentiate points on an
points is 20000 and the embedding dimension is 5. Whilerbit which are true neighbors from those on the orbit which
the number of boxes in the original algorithm is>@0  are false neighbors. A false neighbor is a point in the data set
X 40X 40X 40, the number of random centers is 2000 in ourthat is a neighbor solely because we are viewing the orbit
method. ComputedV values shown are maximad) and  (the attractor in too small an embedded space<{dmin).
minima (¢ ) for each different time delay over ten arbi- When we have achieved a large enough embedding space
trarily chosen vector fields. However, there are little differ- (4=dmin), all neighbors of every orbit point in the multivari-
ences between maxima and minima. With our method th@te phase space will be true neighbors. A detailed procedure
maximum and minimum values ol are nearly 1 over all IS presented in Refd2]. '
time delays, and are more stable than those with the Salvino- We define the embedding rate as the ratio of the true
Cawley method. We can find from Fig(td that theW val-  neighbors to the neighbors in the embedding dimension. Fig-
ues obtained from the original method are periodically deti'e 3 displays a typical example of the embedding rate as a
creased at the time delays of the multiples of 300, which majunction of the embedding dimension for 16 384 EEG data
be caused by the dynamical structure of thes&er attractor Points atT, in a subject. The proper minimum embedding

in the phase space. dimension was selected as 11 in this case.
Figure 2 depicts thaV plots for the data from(a) the 100

Lorenz system andb) the Henon map. We computed/ ©

values for the Lorenz systenix=10(y—x),y=28—y w

—xz,z=— £z+xy], with sampling timeAt=0.004, and the %

Henon map[x;=y;_;+1—1.4* ;,y;=0.3;_,] data. The £«
W values for the Lorenz equation and the Henon map are & «
stable around 0.94 for each time delay. This means by an§ ©
informal determinism tolerance criterion that they are gener-
ated from deterministic systems. Maximuw values for
both of them were also about 0.91 in the original method
[35].

We used the minimum embedding dimension in an em- 01 284567 89101 1218115161 181920222 U2%2%2028283
bedding procedure for reconstructing the attractors in the i imesir
phase space. We estimated the minimum embedding dimen- FIG. 3. The embedding rate as a function of embedding dimen-
sion using the method presented by Keneedl. [42]. The  sion for 16 384 EEG data points of a subject.

30
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Ill. TEST FOR DETERMINISM IN EEG 2

There are four main steps to our test. First, we recorded
the EEG data from normal subjects. Second, we reduced the
additive noise in the EEG with a nonlinear method, devel-
oped by Sauer. Third, we measured the smoothness of the
EEG. Fourth, we compared the results from the EEG with
those from the surrogate data. £

The EEG data were recorded from five subjebigo men o
and three women; age 22.1+ 3.8 years, meanS.D), who
are healthy individuals with no history of psychiatric or neu-
rological disease, at St. Mary’s Hospital in Taejon. With the = " = = "
subjects in a relaxed state with closed eyes, 32.768 sec o (@) Tims (0
data (16 384 data points with sampling tim&t=2 ms) s
were recorded with a Nihon Kohden EEG-4421K, and then
digitized by a 12-bit analog-digital converter in an IBM PC.
Recordings were made under the eyes-closed condition in
order to obtain as long of a stationary EEG data as possible.
All data were digitally filtered in order to remove the re-
sidual EMG activity at 1-35 Hz.

An important experimental fact in chaotic data analysis is
the ubiquitous presence of noise in the time series. Noise,
whether measurement noise, which is merely additive, or
dynamical noise, whose origin lies in the dynamical process -«
itself, can obscure the smoothness feature of a phase portrair -« - - - .
Thus it is important to incorporate noise reduction in order to (b) T (500
make a smoothness test for determinism robust. It is prob- |,
lematic to apply linear filtering techniques for noise reduc-
tion to nonlinear systems, since the power spectrum of the «
chaotic deterministic signal as well as the noise may be
broadband. Recently several nonlinear noise-reduction meth-
ods were proposed in application to nonlinear dynamical sig-
nals[43—-49. Successful application of a nonlinear noise re-
duction algorithm can recover phase-space smoothness:;
which was lost under the influence of noise.

We used the nonlinear method that is developed by Sauel _,
[48]. This method used a filtered version of delay coordinate
embedding called a low-pass embedding, and the singulat -
value decomposition in projecting the input signal along di- (c) ° * i i) * *
rections belonging to the signal of interest. The method is , . .
iterative in nature. One pass of the algorithm through the F!C- 4. (@ Lorenzx coordinate times seriesb) Lorenz data
data replaces an original time seriss:1<i<L} by a less corrupted by 100% Whlt_e Gaussian noi®edB), (c) noise-reduced
noisy version of the original serigs; :1<i<L}. Then the Lorenz data by the nonlinear method developed by Sauer.

same process can be applied to the new series, and so forWa’l. The second step is to organize the embedded points in

The new time series is determined By=s;+m(ti—=S)),  peighborhoods of size, wherer is a rough estimate of the
wheret; is the average value of the several correct vatyes size of the noise. The third step is to project the points in the
of s;, and where &m=1 is a factor fixed for the entire pass neighborhood onto the attractor, or at least to push the points
through the data. We typically uge=0.1 for the first pass, in that direction using the singular value decomposition to
and then slowly increasa to 0.5 throughout further passes. calculate the principal directions of the set of vectors which
There are four steps to generate the estimgjesf the  connect fixed base points to the embedded points. After the
correct value ofs; : low-pass embedding, neighborhood se-corrections necessary to project the points onto the principal
lection, singular value decomposition, and a correction dedirections are determined, we then make use of the fact that
correlation step. First, the data are embedded using coordihe noise is uncorrelated with the signal of interest. For each
nates that are smoothed locally in time using the Fourieembedding coordinate, the random noise in that coordinate
transform(low-pass embeddingFor a chosen window size has an expected value of zero. In order to minimize the in-
of length w, the discrete Fourier transform om points is  troduction of new correlations in the noise from our algo-
evaluated. The Fourier components corresponding tgthe rithm, a postprocessing of the corrections to ensure that they
lowest frequencies are kept for some even integietw, add to zero also is needddorrection decorrelation stgp
whered is an embedding dimension. The valuewivas 64 The algorithm is described in more detail in the paper by
andd was 16 in this case. The inverse transformdgmoints ~ Sauer{48].
yields a smoothed version of a windowed section of the sig- Figure 4 illustrates the effect of the noise-reduction

Lorenz data (x coordinate)

Lorenz data with 100% noise
1 :

@

reduced Loren:

Noise-
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FIG. 5. W plots for (a) the raw data an¢b) the surrogate data of FIG. 6. W plots for (a) the raw data an¢b) the surrogate data of
an EEG from a subject before application of the noise-reductioihe EEG from a subject after application of the noise-reduction
method. For each\, W values shown are maximun®) and mini-  method.
mum (<).

slightly below those for the raw EEG, i.e., 0.36 for average
method on the noise mixed with the signal. It sho@s MaximumWand 0.09 for average minimum W in Fig(t.
noise-free Lorenz datap) Lorenz data with 100% white W values for the surrogate EEG are more fluctuating than
Gaussian nois€0 dB), and (c) noise-reduced Lorenz data those for the raw EEG. There are little differences in e
with our method. A nonlinear noise reduction algorithm canPlots for the EEGs from different channels in a subject. The
recover smoothness of the Lorenz data lost under the inflfEGS Of ten subjects also have similar values \Wr The
ence of noise. However, as shown in the study of Cawley 2verage values of stable maxima and miniidor the raw
al., nonlinear noise reduction does not create smooth phadeECGS Of ten subjects with standard deviations are 0.4
portraits[36]. +0.08 and 0.140.04, respectively.

A simple comparison test using a surrogate time series After application of the noise reduction method, the aver-
can distinguish smoothness from nonsmooth behavior fopge values of maximurw for the EEG increased up to 0.52,
chosen types of randomness. The algorithm of generatingowever they do not exceed 0.7,a minimum deterministic
surrogate data is based on the null hypothesis, which statdglerance for determinism as shown in Figa)s The maxi-
that the data come from a linear Gaussian prof88s The ~ Mum values ofW for the surrogate EEG are staying under
surrogate data are constructed to have the same Fourier spée2 [Fig. 6b)]. We can detect from Fig. 6 that the noise-
tra as the raw data. The Fourier transform has a complejgduced version of the raw EEG has highly different values
amplitude at each frequency, to randomize the phases. Wier W from the surrogate data of the EEG, even though the
multiply each complex amplitude by epig], where ¢ is ~ W's of the noise-reduced raw EEG are under 0.7. We can
independently chosen for each frequency from the intervalnfer from this result that the EEG can be somewhat distin-
[0,27]. gwsh_ed from the surrogate signal generated by a linear sto-

Figure 5 shows th&V plots for (@) the raw and(b) the  chastic process.
surrogate data of the EEG at chaniglfrom a subject be-
fore noise reduction. The embedding dimensibis 16 and,
consequently, the number of neighbors around a random cen-
ter is 17(Fig. 5. The number of data points is 16 384. The As a result, our test suggests that the EEG does not have
number of random centers is 1500. For edchthe maxi- any determinism. However, we can also include some possi-
mum (O) and minimum () values ofW are shown in the bilities for determinism in an EEG. One of the possibilities is
figure. The maximum and minimum values\&ffor the raw  that the determinism in the EEG is too high-dimensional to
EEG data in Fig. &) are oscillating around 0.38 and 0.13, be detected with current methods including our method. The
respectively, which implies that the EEG is not a determin-present method may detect only low-dimensional determin-
istic signal. The results for the surrogate EEG data arésm in a time series. The EEG, however, can be assumed to

IV. TEST FOR HIGH-DIMENSIONAL DETERMINISM
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FIG. 7. A time series generated from a high-dimensional system
in this study.

be generated from high-dimensional systems.

We examined the applicability of our method to high-
dimensional signals by generating an EEG-like signal from =
high-dimensional differential equations. We generated the
high-dimensional signal from nonlinear equations of 12 vari-
ables including the Lorenz equation, the Ueda equation, the
two-well potential Duffing-Holmes equation, and thesRler
equation. The degrees of freedom of the EEG can be as-
sumed to be about 12 since the correlation dimensions of thegy®  © » = *® = * © w o w w
normal EEGs were reported between 6 and 158 51. The
EEG-like signal generated from these equations also had a FIG. 8. W plots for (a) a time series generated from a high-
power spectrum in the range of 0.2—12 Hz, similar to domi-dimensional deterministic system and foy surrogated data of the

0.2

nant frequency ranges of EEGs. time series. For each, W values shown are maximun®() and
The nonlinear coupled equations are minimum (¢).
X1=Xy, 5 .
1 ® X10= ~ (X11+X12), (14)
- (Xs—25) _ .
x2=Tsmw1t+3x7 Sinw,t _
Xll= X10+ aXll, (15)
+X115inw3t—3|x6|X2—XgX1, (6)
where w;=30.0w,=65.0w3=280.0. They are coupled with 5(12= a+ XX~ ), (16)
other equations as follows:
X3= 0 (X4—X3), (77  wherea=0.15,=10.0 (Rossler attractgr
We used thex; coordinate solutiorx,(t) for the signal
X4= — XaXs+ X3~ Xq, (8)  shown in Fig. 7. It is very similar to the EEG with a visual

inspection. Figure 8 demonstrates tWé plots for (a) the
signal and(b) the surrogate data of the signal. 18 is used for

X5 =XaXe D5, O e embedding dimension and 1500 random centers are used
whereo=10.0r =28.0b=8/3 (Lorenz equatio)) in our method. The maximum and minimum valuesWf
decrease over time delays to below 0.7, and then stably os-
Xg=X7, (10 cillate around 0.6. It indicates that this method cannot detect
high-dimensional determinism from the time series.
X;=—kx;— x3+ B cost, (12) ~As is well known, many real systems may be high-
dimensional. If they have too many degrees of freedom, it
wherek=0.1B=12.0(Ueda equation may be necessary to regard them as effectively random for
_ all practical purposes. Indeed, the effort to use the data
Xg=Xg, (120  analysis methods developed for nonlinear dynamics only
makes sense when the system is low-dimensif#8idl Thus
. 1 5 current methods, including ours, need to be improved to be
Xg=— XgF 5Xg(1—X5) +f coswt, (13 applicable for the time series generated from high-

dimensional systems, even though some recent studies pro-
where §=0.15F =0.15w=0.8 (two-well potential Duffing- pose new methods applicable to high-dimensional systems
Holmes attractor [38].
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V. CONCLUSION mental time series from high-dimensional systems, such as

We tested determinism in an EEG by detecting Smmth_bmloglcal systems. Furthermore, these methods need to be

ness of vector fields reconstructed from a time series of thapphed to a time series from many kinds of experimental

EEG. We were not able to find any evidence for determinismgyStemS'

in thg _E_EG from the test. Howeve_r, we cannot exclude the ACKNOWLEDGMENTS

possibility that EEGs are of too high a dimension for their

determinism to be detected with current methods. It is very We thank Dr. Dae-jin Kim and J. Lee at St. Mary’s Hos-
important to develop direct methods applicable to the experipital in Taejon for experimental help during this study.
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