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Test for low-dimensional determinism in electroencephalograms

Jaeseung Jeong, Moo Seong Kim, and Soo Yong Kim
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

~Received 9 February 1999!

We tested low-dimensional determinism in an electroencephalogram~EEG!, based on the fact that smooth-
ness~continuity! on an embedded phase space is enough to imply determinism within time series. A modified
version of the method developed by Salvino and Cawley@Phys. Rev. Lett.73, 1091~1994!# was used. In our
method, we chose a box randomly and then estimated the mean directional element in the box containing the
d11 data points, whered is the embedding dimension. The global average for the mean local directional
elements over the boxes,W, is a measure for smoothness. The nonlinear noise reduction method developed by
Sauer@Physica D58, 193 ~1992!# is then applied to the EEG. We also compared the results for the EEG with
those for its surrogate data. We found that theW values for the noise-reduced EEG had stable values around
0.35, which means that the EEG is not a low-dimensional deterministic signal. However, this method may not
be applicable to the time series generated from high-dimensional deterministic systems. We cannot exclude the
possibility that the determinism in the EEG may be too high-dimensional to be detected with current methods.
@S1063-651X~99!05207-1#

PACS number~s!: 87.80.Tq, 87.19.Nn, 87.90.1y
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I. INTRODUCTION

Electroencephalogram~EEG! is a complex and aperiodi
time series, which is a sum over a very large number
neuronal dendritic potentials. It is an important problem
decide whether the EEG is filtered noise or a determini
signal. If the EEG is deterministic, then we can extract a
of information on brain dynamics from the EEG, and th
study brain functions with dynamical models from the EE

Whether the EEG is generated by a deterministic cha
process or a linear stochastic one is still controvers
Babloyantz and Salazar first reported that the EEG data f
the human brain during the sleep cycle had chaotic attrac
for sleep stages II and IV@1#. A lot of research with nonlin-
ear methods revealed that the EEG had a finite noninte
correlation dimension and a positive Lyapunov expone
which means that the EEG is generated by a determin
chaotic neural process@2–4#. Haken and his colleagues an
lyzed the spatio-temporal patterns of the EEG in epilep
seizures. These showed that the global dynamics of the E
might be described by a nonlinear evolution equation w
order parameters and a few principal patterns, which are
timately related to the degrees of freedom within the sys
@5–7#. Furthermore, there is some evidence that the dist
states of brain activity can also have different chaotic
namics quantified by nonlinear dynamical measures@8–11#.
These measures, even though as measures of compl
they are still informal instead of being used as absolute m
sures, can be used as a fruitful tool in differentiating t
physiological and/or pathological brain states@12–17#.

However, there are a number of technical problems in
implementation of current nonlinear dynamic algorithm
with regard to such variables as data size, sampling rate,
stationarity that preclude an unambiguous interpretation
data sets@18–21#. Osborne and Provenzale demonstra
that the signals from (1/f )-like linear stochastic systems, so
called colored noise, also resulted in a finite correlation
mension @22#. Rapp et al. showed that the filtered nois
could mimic low-dimensional chaotic attractors as the E
PRE 601063-651X/99/60~1!/831~7!/$15.00
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data did @23#. Thus many of the claims for deterministi
chaos in EEG data must bear critical examination and
evaluation.

By using the surrogate data methods, Theileret al. found
that the EEG was not produced by low-dimensional ch
@24,25#. Pritchardet al. also applied surrogate-data testing
a normal resting human EEG and revealed that a nor
resting human EEG was nonlinear, but did not represent l
dimensional chaos@26#. Similar results have been indepe
dently reported by Casdagli@27#, Romboutset al. @28#, and
Palus@29#.

Recently more direct methods have been developed
detect determinism within a time series@28–38#. The
Sugihara-May method is based on how well past trajecto
can predict the future@30#. The Kaplan-Glass method i
based on the parallelness of a certain vector field rec
structed from the time-series data@32,33#. The methods pro-
posed by both Waylandet al. @34# and Salvino and others
@35–37# also measure the continuity of a vector series on
embedded phase space. These direct methods can be u
in identifying deterministic chaos in natural signals wi
broadband power spectra. They are also capable of dis
guishing between chaos and a random process very e
tively.

There are only a few studies on the application of the
direct methods to the EEG@39–41#. Blinowska and Mali-
nowski applied the Sugihara-May method to the EEG, a
reported that the benefits in prediction from this method w
similar to that of a linear autoregressive method. Mees u
the tesselation method to predict one step ahead for the E
@40#. The prediction is rather poor in some places, but
other places it is very good. She draws a conclusion caref
from this casual prediction simulation that determinism
EEG might exist. Glass and his colleagues tested with
Kaplan-Glass method for deterministic dynamics in both
real EEG and a simulated EEG generated by a neural
work model@41#. They found similar orientations of tangen
to the trajectory in a given small region of phase space fr
the simulated EEGs, but not from the real EEGs. Th
831 ©1999 The American Physical Society
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therefore, concluded that the real EEG data did not have
determinism. However, these studies were all prelimin
since they used only small embedding dimensions of ab
3–5, and did not consider the effects of noise in the E
data.

In the present paper, we tested the low-dimensional de
minism in the EEG more rigorously by using a modifie
version of the method which was originally proposed
Salvino and Cawley@35–37#. It is based on the fact tha
smoothness~continuity! on an embedded phase space
enough to imply determinism within a time series. We a
plied a nonlinear noise-reduction method to the EEGs in
der to remove noise effects, and then used the minim
embedding dimension for a reconstruction of the attrac
from the EEG in the phase space. Finally, we compared
results from the EEG with those from the surrogate data
the EEG.

II. ALGORITHMS FOR DETECTING SMOOTHNESS

The main step in our test is to detect smoothness of
vector fields in the phase space reconstructed from the E
data. If the time series are generated from deterministic
tems that are governed by nonlinear ordinary differen
equations, then nearby points on the phase space be
similarly under time evolution. These smoothness proper
thus imply determinism.

Let an observed time seriesv(t) be the output of a differ-
entiable dynamical systemf t on anm-dimensional manifold
M. With delay coordinates and a sufficiently large embe
ding dimensiond, an embedding ofM into a d-dimensional
reconstructed manifoldRd then typically results. The dela
vector time series x(t)5(v(t),v(t1D), . . . ,v„t1(d
21)D…), whereD is the time delay, lives in the embedde
image ofM in Rd. Smoothness of the dynamical system
preserved in the embedded image.

We denote a time-one map, i.e.,f 1, by F and consider the
following general quantity:

f5f~x!5C„x,Fb~x!, . . .Fb(R21)~x!…, R.1, ~1!

whereFb denotes thebth iterate ofF, and C is a smooth
function of itsR vector arguments intoRd. f(x) is a vector
field in Rd. If we takeb51 here for simplicity, then a simple
form for f(x) is

f~x!5 (
r 50

R21

crF
r~x!, R.1. ~2!

F may be an arbitrarily sampled flow, or a ma
F0

„x(t)…5x(t), F1
„x(t)…5x(t), F1

„x(t)…5x(t11), etc.
The cr are arbitrary, and we now take them to be consta
independent ofx.

Directional fields~unit vectors! for f(x) in dynamical
systems are smooth, and depend on the choice of thecr . To
estimate the smoothness of the fields, we can partition
phase space by a uniform grid in the Salvino-Caw
method. We call thej th mesh cell of points, comprised of th
xi ,i 51, . . . ,nj , box j. Then we can compute the average
the directional elements,x̂5f(x)if(x)i21, over box j,
whereif(x)i is a norm off(x).
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21(

i 51

nj

x̂~xi !. ~3!

Yj is 1 for smooth data, and it decreases to 0 for rand
data. A global average of mean local directional eleme
over the boxes is a measure for smoothness, that is, d
minism, in the vector field.

W5N21(
j

nj iYj i2 ~4!

is just a weighted mean square ofYj . If the data are smooth
and boxes are sufficiently small,W is 1.W is, however, often
a lot less than 1 owing to the finite numerics for smooth da
W depends on embedding parameters such as time de
and embedding dimensions.

W also depends on the choice of vector fieldf. The natu-
ral choice $cr%5$21,1%, implicit in the method of Refs.
@32–34#, does not necessarily produce the most determini
looking W(D). SinceW51 is supposed to hold for any$cr%,
the choice of vector field is arbitrary. We choose ten vec
fields, first chosen by Salvino and Cawley@35#, and identify
maximum and minimum values of theW(D) for each time
delayD.

The method, which estimates the average of the dir
tional elements after partitioning the phase space by unifo
grids, may present spurious results for inhomogeneous
tor fields in the phase space. The value of the mean di
tional elements in a box depends on the number of d
points in a box. If we partition the phase space by a coa
grained uniform grid, the dense regions would have exc
sively large points in one box, which then leads to low v
ues ofW even for smooth data. On the other hand, if the
are only one or a few points in the boxes with finely grain
meshes, they would give rise to relatively high values forW.
It is very difficult to partition the phase space by a prop
size of grids in a high-dimensional phase space, because
number of boxes is exponentially increasing as the size
the boxes decreases. Unfortunately, most of the dynam
systems in nature are both high-dimensional and inhomo
neous.

We modified the method in order to overcome these pr
lems. First, we picked a random point in the phase space,
then we chose the nearest-neighbor points around this
dom center. We selectedd11 for the number of the neares
neighbors around this random center, whered is the embed-
ding dimension. Then we estimated the mean directional
ements in that box, and iterated it.

In the test, we introduced an informal determinism tole
ance criterion: if 0.9,W,1.0, then we would label the
given data as deterministic, and if 0,W,0.7, then we
would conclude there is no evidence for determinism. T
intermediate case, 0.7,W,0.9, is known to sometimes aris
from a deterministic time series@36#. In these cases we
would necessarily compare the results with those for the
rogate data.

Figure 1 shows the comparison of theW plots for the data
of Rössler systems obtained from~a! our method with those
from ~b! the Salvino-Cawley method. For the Ro¨ssler time
series thex coordinate ofẋ52(y1z),ẏ5x10.15y,ż50.2
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1zx210z was sampled withDt50.004. The number of dat
points is 20 000 and the embedding dimension is 5. Wh
the number of boxes in the original algorithm is 40340
340340340, the number of random centers is 2000 in o
method. ComputedW values shown are maxima (s) and
minima (L) for each different time delayD over ten arbi-
trarily chosen vector fields. However, there are little diffe
ences between maxima and minima. With our method
maximum and minimum values ofW are nearly 1 over all
time delays, and are more stable than those with the Salv
Cawley method. We can find from Fig. 1~b! that theW val-
ues obtained from the original method are periodically
creased at the time delays of the multiples of 300, which m
be caused by the dynamical structure of the Ro¨ssler attractor
in the phase space.

Figure 2 depicts theW plots for the data from~a! the
Lorenz system and~b! the Henon map. We computedW
values for the Lorenz system@ ẋ510(y2x),ẏ528x2y

2xz,ż52 8
3 z1xy#, with sampling timeDt50.004, and the

Henon map@xi5yi 211121.4xi 21
2 ,yi50.3xi 21# data. The

W values for the Lorenz equation and the Henon map
stable around 0.94 for each time delay. This means by
informal determinism tolerance criterion that they are gen
ated from deterministic systems. MaximumW values for
both of them were also about 0.91 in the original meth
@35#.

We used the minimum embedding dimension in an e
bedding procedure for reconstructing the attractors in
phase space. We estimated the minimum embedding dim
sion using the method presented by Kennelet al. @42#. The

FIG. 1. The comparison ofW plots obtained from our method
with the original one: For each time delayn, computedW values
are maximum (d) and minimum (L) for Rössler system~a! with
our method;~b! with the original method.
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basic idea of the method is that in the passage from dim
siond to dimensiond11, one can differentiate points on a
orbit which are true neighbors from those on the orbit wh
are false neighbors. A false neighbor is a point in the data
that is a neighbor solely because we are viewing the o
~the attractor! in too small an embedded space (d,dmin).
When we have achieved a large enough embedding s
(d>dmin), all neighbors of every orbit point in the multivari
ate phase space will be true neighbors. A detailed proced
is presented in Ref.@42#.

We define the embedding rate as the ratio of the t
neighbors to the neighbors in the embedding dimension. F
ure 3 displays a typical example of the embedding rate a
function of the embedding dimension for 16 384 EEG d
points atT4 in a subject. The proper minimum embeddin
dimension was selected as 11 in this case.

FIG. 2. W(n) plots for the data from~a! Lorenz system and~b!
Henon map.W values shown are maximum (d) and minimum
(L) for eachn.

FIG. 3. The embedding rate as a function of embedding dim
sion for 16 384 EEG data points of a subject.
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III. TEST FOR DETERMINISM IN EEG

There are four main steps to our test. First, we recor
the EEG data from normal subjects. Second, we reduced
additive noise in the EEG with a nonlinear method, dev
oped by Sauer. Third, we measured the smoothness o
EEG. Fourth, we compared the results from the EEG w
those from the surrogate data.

The EEG data were recorded from five subjects~two men
and three women; age5 22.163.8 years, mean6S.D.!, who
are healthy individuals with no history of psychiatric or ne
rological disease, at St. Mary’s Hospital in Taejon. With t
subjects in a relaxed state with closed eyes, 32.768 se
data ~16 384 data points with sampling timeDt52 ms)
were recorded with a Nihon Kohden EEG-4421K, and th
digitized by a 12-bit analog-digital converter in an IBM PC
Recordings were made under the eyes-closed conditio
order to obtain as long of a stationary EEG data as poss
All data were digitally filtered in order to remove the r
sidual EMG activity at 1–35 Hz.

An important experimental fact in chaotic data analysis
the ubiquitous presence of noise in the time series. No
whether measurement noise, which is merely additive,
dynamical noise, whose origin lies in the dynamical proc
itself, can obscure the smoothness feature of a phase por
Thus it is important to incorporate noise reduction in order
make a smoothness test for determinism robust. It is pr
lematic to apply linear filtering techniques for noise redu
tion to nonlinear systems, since the power spectrum of
chaotic deterministic signal as well as the noise may
broadband. Recently several nonlinear noise-reduction m
ods were proposed in application to nonlinear dynamical
nals@43–49#. Successful application of a nonlinear noise
duction algorithm can recover phase-space smoothn
which was lost under the influence of noise.

We used the nonlinear method that is developed by Sa
@48#. This method used a filtered version of delay coordin
embedding called a low-pass embedding, and the sing
value decomposition in projecting the input signal along
rections belonging to the signal of interest. The method
iterative in nature. One pass of the algorithm through
data replaces an original time series$si :1< i<L% by a less
noisy version of the original series$si8 :1< i<L%. Then the
same process can be applied to the new series, and so
The new time series is determined bysi85si1m( t̂ i2si),

wheret̂ i is the average value of the several correct valuest i j
of si , and where 0<m<1 is a factor fixed for the entire pas
through the data. We typically usem50.1 for the first pass
and then slowly increasem to 0.5 throughout further passe

There are four steps to generate the estimatest i j of the
correct value ofsi : low-pass embedding, neighborhood s
lection, singular value decomposition, and a correction
correlation step. First, the data are embedded using coo
nates that are smoothed locally in time using the Fou
transform~low-pass embedding!. For a chosen window size
of length w, the discrete Fourier transform onw points is
evaluated. The Fourier components corresponding to the1

2 d
lowest frequencies are kept for some even integerd,w,
whered is an embedding dimension. The value ofw was 64
andd was 16 in this case. The inverse transform ond points
yields a smoothed version of a windowed section of the s
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nal. The second step is to organize the embedded poin
neighborhoods of sizer, wherer is a rough estimate of the
size of the noise. The third step is to project the points in
neighborhood onto the attractor, or at least to push the po
in that direction using the singular value decomposition
calculate the principal directions of the set of vectors wh
connect fixed base points to the embedded points. After
corrections necessary to project the points onto the princ
directions are determined, we then make use of the fact
the noise is uncorrelated with the signal of interest. For e
embedding coordinate, the random noise in that coordin
has an expected value of zero. In order to minimize the
troduction of new correlations in the noise from our alg
rithm, a postprocessing of the corrections to ensure that t
add to zero also is needed~correction decorrelation step!.
The algorithm is described in more detail in the paper
Sauer@48#.

Figure 4 illustrates the effect of the noise-reducti

FIG. 4. ~a! Lorenz x coordinate times series,~b! Lorenz data
corrupted by 100% white Gaussian noise~0 dB!, ~c! noise-reduced
Lorenz data by the nonlinear method developed by Sauer.
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PRE 60 835TEST FOR LOW-DIMENSIONAL DETERMINISM IN . . .
method on the noise mixed with the signal. It shows~a!
noise-free Lorenz data,~b! Lorenz data with 100% white
Gaussian noise~0 dB!, and ~c! noise-reduced Lorenz dat
with our method. A nonlinear noise reduction algorithm c
recover smoothness of the Lorenz data lost under the in
ence of noise. However, as shown in the study of Cawleet
al., nonlinear noise reduction does not create smooth ph
portraits@36#.

A simple comparison test using a surrogate time se
can distinguish smoothness from nonsmooth behavior
chosen types of randomness. The algorithm of genera
surrogate data is based on the null hypothesis, which st
that the data come from a linear Gaussian process@50#. The
surrogate data are constructed to have the same Fourier
tra as the raw data. The Fourier transform has a comp
amplitude at each frequency, to randomize the phases.
multiply each complex amplitude by exp@ if#, wheref is
independently chosen for each frequency from the inte
@0,2p#.

Figure 5 shows theW plots for ~a! the raw and~b! the
surrogate data of the EEG at channelT4 from a subject be-
fore noise reduction. The embedding dimensiond is 16 and,
consequently, the number of neighbors around a random
ter is 17~Fig. 5!. The number of data points is 16 384. Th
number of random centers is 1500. For eachD, the maxi-
mum (s) and minimum (L) values ofW are shown in the
figure. The maximum and minimum values ofW for the raw
EEG data in Fig. 5~a! are oscillating around 0.38 and 0.1
respectively, which implies that the EEG is not a determ
istic signal. The results for the surrogate EEG data

FIG. 5. W plots for ~a! the raw data and~b! the surrogate data o
an EEG from a subject before application of the noise-reduc
method. For eachn, W values shown are maximum (d) and mini-
mum (L).
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slightly below those for the raw EEG, i.e., 0.36 for avera
maximumW and 0.09 for average minimum W in Fig. 5~b!.
W values for the surrogate EEG are more fluctuating th
those for the raw EEG. There are little differences in theW
plots for the EEGs from different channels in a subject. T
EEGs of ten subjects also have similar values forW. The
average values of stable maxima and minimaW for the raw
EEGs of ten subjects with standard deviations are
60.08 and 0.1460.04, respectively.

After application of the noise reduction method, the av
age values of maximumW for the EEG increased up to 0.52
however they do not exceed 0.7,a minimum determinis
tolerance for determinism as shown in Fig. 6~a!. The maxi-
mum values ofW for the surrogate EEG are staying und
0.2 @Fig. 6~b!#. We can detect from Fig. 6 that the nois
reduced version of the raw EEG has highly different valu
for W from the surrogate data of the EEG, even though
W’s of the noise-reduced raw EEG are under 0.7. We
infer from this result that the EEG can be somewhat dis
guished from the surrogate signal generated by a linear
chastic process.

IV. TEST FOR HIGH-DIMENSIONAL DETERMINISM

As a result, our test suggests that the EEG does not h
any determinism. However, we can also include some po
bilities for determinism in an EEG. One of the possibilities
that the determinism in the EEG is too high-dimensional
be detected with current methods including our method. T
present method may detect only low-dimensional determ
ism in a time series. The EEG, however, can be assume

n

FIG. 6. W plots for ~a! the raw data and~b! the surrogate data o
the EEG from a subject after application of the noise-reduct
method.
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be generated from high-dimensional systems.
We examined the applicability of our method to hig

dimensional signals by generating an EEG-like signal fr
high-dimensional differential equations. We generated
high-dimensional signal from nonlinear equations of 12 va
ables including the Lorenz equation, the Ueda equation,
two-well potential Duffing-Holmes equation, and the Ro¨ssler
equation. The degrees of freedom of the EEG can be
sumed to be about 12 since the correlation dimensions o
normal EEGs were reported between 6 and 13@15,51#. The
EEG-like signal generated from these equations also ha
power spectrum in the range of 0.2–12 Hz, similar to dom
nant frequency ranges of EEGs.

The nonlinear coupled equations are

ẋ15x2 , ~5!

ẋ25
~x5225!

3
sinv1t13x7 sinv2t

1x11sinv3t23ux6ux22x9x1 , ~6!

wherev1530.0,v2565.0,v3580.0. They are coupled with
other equations as follows:

ẋ35s~x42x3!, ~7!

ẋ452x3x51rx32x4 , ~8!

ẋ55x3x42bx5 , ~9!

wheres510.0,r 528.0,b58/3 ~Lorenz equation!;

ẋ65x7 , ~10!

ẋ752kx72x6
31B cost, ~11!

wherek50.1,B512.0 ~Ueda equation!;

ẋ85x9 , ~12!

ẋ952dx91
1

2
x8~12x8

2!1 f cosvt, ~13!

whered50.15,F50.15,v50.8 ~two-well potential Duffing-
Holmes attractor!;

FIG. 7. A time series generated from a high-dimensional sys
in this study.
e
-
e

s-
he

a
-

ẋ1052~x111x12!, ~14!

ẋ115x101ax11, ~15!

ẋ125a1x12~x102m!, ~16!

wherea50.15,m510.0 ~Rössler attractor!.
We used thex1 coordinate solutionx1(t) for the signal

shown in Fig. 7. It is very similar to the EEG with a visu
inspection. Figure 8 demonstrates theW plots for ~a! the
signal and~b! the surrogate data of the signal. 18 is used
the embedding dimension and 1500 random centers are
in our method. The maximum and minimum values ofW
decrease over time delays to below 0.7, and then stably
cillate around 0.6. It indicates that this method cannot de
high-dimensional determinism from the time series.

As is well known, many real systems may be hig
dimensional. If they have too many degrees of freedom
may be necessary to regard them as effectively random
all practical purposes. Indeed, the effort to use the d
analysis methods developed for nonlinear dynamics o
makes sense when the system is low-dimensional@37#. Thus
current methods, including ours, need to be improved to
applicable for the time series generated from hig
dimensional systems, even though some recent studies
pose new methods applicable to high-dimensional syst
@38#.

m

FIG. 8. W plots for ~a! a time series generated from a hig
dimensional deterministic system and for~b! surrogated data of the
time series. For eachn, W values shown are maximum (d) and
minimum (L).
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V. CONCLUSION

We tested determinism in an EEG by detecting smoo
ness of vector fields reconstructed from a time series of
EEG. We were not able to find any evidence for determini
in the EEG from the test. However, we cannot exclude
possibility that EEGs are of too high a dimension for th
determinism to be detected with current methods. It is v
important to develop direct methods applicable to the exp
o-

i-

.

lva

el,

ex

en

lin

fu

ll,

D.
-
e

e
r
y
i-

mental time series from high-dimensional systems, such
biological systems. Furthermore, these methods need to
applied to a time series from many kinds of experimen
systems.
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@3# J. Röschke and E. Bas¸ar, in Dynamics of Sensory and Cogn
tive Processing by the Brain~Ref. @2#!, p. 203.

@4# A. C. K. Soong and C. I. J. M. Stuart, Biol. Cybern.62, 55
~1989!.

@5# R. Friedrich, A. Fuchs, and H. Haken, inRhythms in Biologi-
cal System,edited by H. Haken and H. P. Ko¨pchen~Springer,
Berlin, 1992!, p. 315.

@6# H. Haken,Principles of Brain Functioning~Springer-Verlag,
Berlin, 1996!, p. 193.

@7# R. Friedrich and C. Uhl, Physica D98, 171 ~1996!.
@8# A. Babloyantz and A. Destexhe, inFrom Chemical to Biologi-

cal Organization,edited by M. Markus, S. Muller, and G
Nicolis ~Springer, Berlin, 1987!, p. 307.

@9# J. P. Pijn, J. Van Neerven, A. Noest, and F. H. Lopes da Si
Electroencephalogr. Clin. Neurophysiol.79, 371 ~1991!.
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